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Introduction

e Rapid urbanization: 4.7B people to
6.7B by 2050 [United Nations]

e Air and water pollution, unsustainable
energy consumption, toxic waste
disposal, inadequate urban planning,
decreased public health and safety,
social vulnerability

e In most large cities of the world,
mobility of passengers and freights
is not yet sustainable

e Traffic congestion, increase of
transport needs, ineffective
accessibility, reduced productivity
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Introduction

Rapid urbanization: 4.7B people to °
6.7B by 2050 [United Nations]

Air and water pollution, unsustainable

energy consumption, toxic waste

disposal, inadequate urban planning, °
decreased public health and safety,
social vulnerability °

In most large cities of the world,

mobility of passengers and freights

is not yet sustainable

Traffic congestion, increase of

transport needs, ineffective °
accessibility, reduced productivity

Solutions:

o 1. Champion alternatives

o 2. Enlarge infrastructure

o 3. Manage traffic flows
Increase of available data enables
innovative and integrated solutions
Urban computing: intelligent
transportation systems (ITS), smart
vehicle sharing systems, home
automation, smart grid and energy
solutions
Core component of ITS:

o traffic forecasting
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Traffic Forecasting

Goal of Traffic Forecasting:

e Measure, model and predict traffic
conditions, in real-time, accurately and
reliably, in order to

e Optimize the flow and mitigate traffic
congestion, and support traffic light
control, time of arrival estimates, planning
of new road segments
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Traffic Forecasting

Goal of Traffic Forecasting: Very challenging problem:

e Measure, model and predict traffic e Heterogeneous data (e.g., loop counter
conditions, in real-time, accurately and and floating car data)
reliably, in order to e Complex spatio-temporal dependencies

e Optimize the flow and mitigate traffic e Typically sparse, incomplete and high-
congestion, and support traffic light dimensional data
control, time of arrival estimates, planning e Inclusion of external factors (e.g., weather
of new road segments conditions, and road accidents)
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Traffic Forecasting
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Figure 1: Six types of urban data [9]. Reprinted with permission.
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Traffic Forecasting

e Traditional approaches can be divided into e Traditional data-driven approaches
model-driven and data-driven approaches typically require careful feature
engineering, and are not complex enough
to model the non-linearity and non-

) . _ stationarity of the spatio-temporal data
e Model-driven methods typically require

prior knowledge, detailed modeling, not
easily transferable to other cases,
significant computational resources
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Neural Networks

e Deep learning and neural networks

Deep Feed Forward (DFF)
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Source: Van Veen, F. & Leijnen, S. (2019). The Neural Network Zoo. Retrieved from https://www.asimovinstitute.org/neural-network-zoo



Neural Networks

e Deep learning and neural networks

Deep Feed Forward (DFF)
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Neural networks (datasets and compute)
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Neural networks (datasets and compute)
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Neural Networks
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Convolutional Neural Networks (CNN)

Deep Feed Forward (DFF)
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Convolutional Neural Networks (CNN)
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Convolutional Neural Networks (CNN)

Deep Feed Forward (DFF) ( Fhel2— Qe

\&.H Q
,I‘ X X @(.‘;(

)
'A A'

JOO00C00VVY

— car
— TRUCK
— VAN
[ O

— BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN Necrep SOFTMAX
N Y
FEATURE LEARNING CLASSIFICATION

J. Rico, J. Barateiro, A. Oliveira - Graph Neural Networks for Traffic Forecasting (OMAINTEC 2019)



Source: Otavio Good - A visual and intuitive understanding of deep learning


http://www.youtube.com/watch?v=9KuhzUX1_Ks
https://youtu.be/9KuhzUX1_Ks

Convolutional Neural Networks (CNN)

J. Rico, J. Barateiro, A. Oliveira - Graph Neural Networks for Traffic Forecasting (OMAINTEC 2019)



Convolutional Neural Networks (CNN)
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Graph Neural Networks (GNN)
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Graph Neural Networks (GNN)
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Graph Neural Networks (GNN)
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Graph Neural Networks (GNN)

Category References

Recurrent Graph Neural Networks [39], [47]-[50]

Convolutional Graph Neural Networks | [37], [40], [S1]-[53]

Graph Attention Networks [54], [55]

Graph Autoencoders [56]-[61]

Table 1. Categorization of graph neural network models and representative publications.
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Graph Neural Networks (GNN)

Category References X(6,7)
Recurrent Graph Neural Networks [39], [47]-[50] T
Convolutional Graph Neural Networks | [37], [40], [S1]-[53] xen o
Graph Attention Networks [54], [55]
Graph Autoencoders [56]-[61]

Table 1. Categorization of graph neural network models and representative publications. hy = (1 X(1,2) X(1,3) X 1,8y P2y ha, Ray X2, X3, %4)

hv = f(xw xca[v]: hne[v]i xne[v])a

0, = g(hy, xy),
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Graph Neural Networks (GNN)
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Graph Neural Networks (GNN)
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Graph Network (GN) Blocks
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Graph Network (GN) Blocks
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Graph Network (GN) Blocks
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GNN for Traffic
Forecasting

Category References

Recurrent Graph Neural Networks [39], [47]-[50]

Convolutional Graph Neural Networks | [37], [40], [S1]-[53]

Graph Attention Networks [54], [55]

Graph Autoencoders [56]-[61]

Table 1. Categorization of graph neural network models and representative publications.




GNN for Traffic
Forecasting

Category References

Recurrent Graph Neural Networks [39], [47]-[50]

Convolutional Graph Neural Networks | [37], [40], [S1]-[53]

Graph Attention Networks [54], [55]

Graph Autoencoders [56]-[61]

Table 1. Categorization of graph neural network models and representative publications.
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GNN for Traffic
Forecasting

Model Ref. [ Scope | Predicts | Data source Datasets Open dataset? | Code available?
ST-GCN [92] | Fw,Ur S L BJER4, PeMS X, v v
DCRNN [83] Fw S L METR-LA, PeMS v v
MRes-RGNN | [87] Fw S L METR-LA, PeMS v X
TGC-LSTM [7] | Fw,Ur S L, FCD LOOP, INRIX v, X X
ASTGCN [8] Fw F,S L PeMSD4, PeMSD8 v v
STDGI [86] Fw S L METR-LA ' v

TaxiNYC, TaxiBJ,
MVGCN [90] Ur F FCD BikeDC, BikeNYC v X
DST-GCNN [82] | Fw,Ur S,V L, FCD METR-LA, TaxiBJ v X
GSRNN [91] Ur F FCD BikeNYC, TaxiBJ v X
Graph Wavenet | [84] Fw S L METR-LA, PeMS v v
3D-TGCN [6] Fw S L PeMS v X
ST-UNet [93] Fw S L METR-LA, PeMS v X
GaAN [55] Fw S L METR-LA v X
Motif-GCRNN | [88] Ur S FCD TaxiChengdu X X
STGi-ResNet [85] Ur F FCD Didi Chengdu v X
T-GCN [94] | Fw, Ur S FCD SZ-taxi, Los-loop X, v X
FlowConvGRU | [97] Ur F FCD TaxiNYC, TaxiCD v X
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GNN for Traffic Forecasting
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Conclusions, Challenges and Opportunities

Deep learning and in particular, Graph
Neural Networks, have achieved state of
the art results in prediction tasks, including
traffic prediction

Several challenges and opportunities lie
ahead, in the next decades

Opportunities:
o  More and better data
o  More computational resources

Challenges:
o Uncertainty estimates
Interpretability
Integration with downstream applications
Data ageing and concept drift
Travel time prediction
Better evaluation metrics
Systematic inclusion of exogenous factors

o O O O O O
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